1. Dismiss Notice

A Four Planet System in Orbit, Directly Imaged and Remarkable

Discussion in 'Space Exploration and the Cosmos' started by Num7, Jan 30, 2017.

  1. Num7

    Num7 Administrator

    Joined:
    Dec 15, 2005
    Messages:
    9,017
    Likes Received:
    3,214
    [​IMG]

    The era of directly imaging exoplanets has only just begun, but the science and viewing pleasures to come are appealingly apparent.

    This evocative movie of four planets more massive than Jupiter orbiting the young star HR 8799 is a composite of sorts, including images taken over seven years at the W.M. Keck observatory in Hawaii.

    The movie clearly doesn’t show full orbits, which will take many more years to collect. The closest-in planet circles the star in around 40 years; the furthest takes more than 400 years.

    But as described by Jason Wang, an astronomy graduate student at the University of California, Berkeley, researchers think that the four planets may well be in resonance with each other.

    In this case it’s a one-two-four-eight resonance, meaning that each planet has an orbital period in nearly precise ratio with the others in the system.

    The black circle in the center of the image is part of the observing and analyzing effort to block the blinding light of the star, and thus make the planets visible.

    The images were initially captured by a team of astronomers including Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics, who analyzed the data. The movie animation was put together by Wang, who is part of the Berkeley arm of the Nexus for Exoplanet System Science (NExSS), a NASA-sponsored group formed to encourage interdisciplinary exoplanet science.

    The star HR 8799 has already played a pioneering role in the evolution of direct imaging of exoplanets. In 2008, the Marois group announced discovery of three of the four HR 8799 planets using direct imaging for the first time. On the same day that a different team announced the direct imaging of a planet orbiting the star Fomalhaut.

    Read more:
    HR 8799 – Many Worlds
     
  2. Loading...