in 8 Chance of Catastrophic Solar Megastorm by 2020

Opmmur

Time Travel Professor
Messages
5,049
1 in 8 Chance of Catastrophic Solar Megastorm by 2020


The Earth has a roughly 12 percent chance of experiencing an enormous megaflare erupting from the sun in the next decade. This event could potentially cause trillions of dollars’ worth of damage and take up to a decade to recover from.

Such an extreme event is considered to be relatively rare. The last gigantic solar storm, known as the Carrington Event, occurred more than 150 years ago and was the most powerful such event in recorded history.

That a rival to this event might have a greater than 10 percent chance of happening in the next 10 years was surprising to space physicist Pete Riley, senior scientist at Predictive Science in San Diego, California, who published the estimate in Space Weather on Feb. 23.

“Even if it’s off by a factor of two, that’s a much larger number than I thought,” he said.

Earth’s sun goes through an 11-year cycle of increased and decreased activity. During solar maximum, it’s dotted with many sunspots and enormous magnetic whirlwinds erupt from its surface. Occasionally, these flares burst outward from the sun, spewing a mass of charged particles out into space.


Small solar flares happen quite often whereas very large ones are infrequent, a mathematical distribution known as a power law. Riley was able to estimate the chance of an enormous solar flare by looking at historical databases and calculating the relation between the size and occurrence of solar flares.

The biggest solar event ever seen was the Carrington Event, which occurred on Sept. 1, 1859. That morning, astronomer Richard Carrington watched an enormous solar flare erupt from the sun’s surface, emitting a particle stream at the Earth traveling more than 4 million miles per hour.

When they hit the Earth’s atmosphere, those particles generated the intense ghostly ribbons of light known as auroras. Though typically relegated to the most northerly and southerly parts of the planet, the atmospheric phenomenon reached as far as Cuba, Hawaii, and northern Chile. People in New York City gathered on sidewalks and rooftops to watch “the heavens … arrayed in a drapery more gorgeous than they have been for years,” as The New York Times described it.

'It's like being able to see a cyclone coming but not knowing the wind speed until it hits your boat 50 miles off the coast.'
Auroras may be beautiful, but the charged particles can wreak havoc on electrical systems. At the time of the Carrington Event, telegraph stations caught on fire, their networks experienced major outages and magnetic observatories recorded disturbances in the Earth’s field that were literally off the scale.
In today’s electrically dependent modern world, a similar scale solar storm could have catastrophic consequences. Auroras damage electrical power grids and may contribute to the erosion of oil and gas pipelines. They can disrupt GPS satellites and disturb or even completely black out radio communication on Earth.

During a geomagnetic storm in 1989, for instance, Canada’s Hydro-Quebec power grid collapsed within 90 seconds, leaving millions without power for up to nine hours.

The potential collateral damage in the U.S. of a Carrington-type solar storm might be between $1 trillion and $2 trillion in the first year alone, with full recovery taking an estimated four to 10 years, according to a 2008 report from the National Research Council.

“A longer-term outage would likely include, for example, disruption of the transportation, communication, banking, and finance systems, and government services; the breakdown of the distribution of potable water owing to pump failure; and the loss of perishable foods and medications because of lack of refrigeration,” the NRC report said.

But such possibilities likely represent only the worst-case scenario, said Robert Rutledge, lead of the forecast office at the NOAA/National Weather Service Space Weather Prediction Center. The potential dangers might be significantly less, since power companies are aware of such problems and can take action to mitigate them.

For instance, companies may store power in areas where little damage is expected or bring on additional lines to help with power overloads. This is assuming, of course, that they are given enough warning as to the time and location of a solar storm’s impact on the Earth. Satellites relatively close to Earth are required to measure the exact strength and orientation of a storm.

“It’s like being able to see a cyclone coming but not knowing the wind speed until it hits your boat 50 miles off the coast,” Rutledge said.
 

Opmmur

Time Travel Professor
Messages
5,049
Solar storm of 1859
From Wikipedia, the free encyclopedia
Jump to: navigation, search


Sunspots of September 1, 1859, as sketched by Richard Carrington. A and B mark the initial positions of an intensely bright event, which moved over the course of 5 minutes to C and D before disappearing.

The solar storm of 1859, also known as the 1859 Solar Superstorm, or the Carrington Event, was a powerful geomagnetic solar storm in 1859 during solar cycle 10. A solar flare and/or coronal mass ejection produced a solar storm which hit Earth's magnetosphere and induced the largest known geomagnetic solar storm, which was observed and recorded by Richard C. Carrington.

Carrington Super Flare
From August 28, 1859, until September 2, numerous sunspots and solar flares were observed on the Sun. Just before noon on September 1, the English astronomer Richard Carrington observed the largest flare, which caused a major coronal mass ejection (CME) to travel directly toward Earth, taking 17.6 hours. Such a journey normally takes three to four days. This second CME moved so quickly because the first one had cleared the way of the ambient solar wind plasma.

On August 29, 1859, aurorae were observed as far north as Queensland.

On September 1, 1859, Carrington and Richard Hodgson, another English amateur astronomer, independently made the first observations of a solar flare. Because of a simultaneous "crochet" observed in the Kew Observatory magnetometer record by Scottish physicist Balfour Stewart and a geomagnetic storm observed the following day, Carrington suspected a solar-terrestrial connection. Worldwide reports on the effects of the geomagnetic storm of 1859 were compiled and published by Elias Loomis which support the observations of Carrington and Stewart.

On September 1–2, 1859, the largest recorded geomagnetic storm occurred. Aurorae were seen around the world, even as far south as the Caribbean; those over the Rocky Mountains were so bright that their glow awoke gold miners, who began preparing breakfast because they thought it was morning. People who happened to be awake in the northeastern US could read a newspaper by the aurora's light. The aurora was visible as far from the poles as Cuba and Hawaii.

Telegraph systems all over Europe and North America failed, in some cases giving telegraph operators electric shocks. Telegraph pylons threw sparks. Some telegraph systems continued to send and receive messages despite having been disconnected from their power supplies. Compasses and other sensitive instruments reeled as if struck by a massive magnetic fist.

On Saturday, September 3, 1859, the Baltimore American and Commercial Advertiser reported, "Those who happened to be out late on Thursday night had an opportunity of witnessing another magnificent display of the auroral lights. The phenomenon was very similar to the display on Sunday night, though at times the light was, if possible, more brilliant, and the prismatic hues more varied and gorgeous. The light appeared to cover the whole firmament, apparently like a luminous cloud, through which the stars of the larger magnitude indistinctly shone. The light was greater than that of the moon at its full, but had an indescribable softness and delicacy that seemed to envelop everything upon which it rested. Between 12 and 1 o'clock, when the display was at its full brilliancy, the quiet streets of the city resting under this strange light, presented a beautiful as well as singular appearance." In June 2013, a joint venture from researchers at Lloyd's of London and Atmospheric and Environmental Research (AER) in the United States used data from the Carrington Event to estimate the current cost of a similar event to the world economy at $2.6 trillion (£1.67tr).

Similar events
Ice cores contain thin nitrate-rich layers that can be analyzed to reconstruct a history of past events before reliable observations; the data from Greenland ice cores was gathered by Kenneth G. McCracken and others. These show evidence that events of this magnitude—as measured by high-energy proton radiation, not geomagnetic effect—occur approximately once per 500 years, with events at least one-fifth as large occurring several times per century. These similar but much more extreme cosmic ray events however may originate outside the Solar system and even outside the galaxy. Less severe storms have occurred in 1921 and 1960, when widespread radio disruption was reported. The March 1989 geomagnetic storm knocked out power across large sections of Quebec, Canada.
 


Top